Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352521

RESUMO

To overtake competitors, microbes produce and secrete secondary metabolites that kill neighboring cells and sequester nutrients. This natural product-mediated competition likely evolved in complex microbial communities that included viral pathogens. From this ecological context, we hypothesized that microbes secrete metabolites that "weaponize" natural pathogens (i.e., bacteriophages) to lyse their competitors. Indeed, we discovered a bacterial secondary metabolite that sensitizes other bacteria to phage infection. We found that this metabolite provides the producer (a Streptomyces sp.) with a fitness advantage over its competitor (Bacillus subtilis) by promoting phage infection. The phage-promoting metabolite, coelichelin, sensitized B. subtilis to a wide panel of lytic phages, and it did so by preventing the early stages of sporulation through iron sequestration. Beyond coelichelin, other natural products may provide phage-mediated competitive advantages to their producers-either by inhibiting sporulation or through yet-unknown mechanisms.

2.
Breast Cancer Res ; 25(1): 82, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430354

RESUMO

BACKGROUND: Microbial dysbiosis has emerged as an important element in the development and progression of various cancers, including breast cancer. However, the microbial composition of the breast from healthy individuals, even relative to risk of developing breast cancer, remains unclear. Here, we performed a comprehensive analysis of the microbiota of the normal breast tissue, which was analyzed in relation to the microbial composition of the tumor and adjacent normal tissue. METHODS: The study cohorts included 403 cancer-free women (who donated normal breast tissue cores) and 76 breast cancer patients (who donated tumor and/or adjacent normal tissue samples). Microbiome profiling was obtained by sequencing the nine hypervariable regions of the 16S rRNA gene (V1V2, V2V3, V3V4, V4V5, V5V7, and V7V9). Transcriptome analysis was also performed on 190 normal breast tissue samples. Breast cancer risk score was assessed using the Tyrer-Cuzick risk model. RESULTS: The V1V2 amplicon sequencing resulted more suitable for the analysis of the normal breast microbiome and identified Lactobacillaceae (Firmicutes phylum), Acetobacterraceae, and Xanthomonadaceae (both Proteobacteria phylum) as the most abundant families in the normal breast. However, Ralstonia (Proteobacteria phylum) was more abundant in both breast tumors and histologically normal tissues adjacent to malignant tumors. We also conducted a correlation analysis between the microbiome and known breast cancer risk factors. Abundances of the bacterial taxa Acetotobacter aceti, Lactobacillus vini, Lactobacillus paracasei, and Xanthonomas sp. were associated with age (p < 0.0001), racial background (p < 0.0001), and parity (p < 0.0001). Finally, transcriptome analysis of normal breast tissues showed an enrichment in metabolism- and immune-related genes in the tissues with abundant Acetotobacter aceti, Lactobacillus vini, Lactobacillus paracasei, and Xanthonomas sp., whereas the presence of Ralstonia in the normal tissue was linked to dysregulation of genes involved in the carbohydrate metabolic pathway. CONCLUSIONS: This study defines the microbial features of normal breast tissue, thus providing a basis to understand cancer-related dysbiosis. Moreover, the findings reveal that lifestyle factors can significantly affect the normal breast microbial composition.


Assuntos
Neoplasias da Mama , Gravidez , Humanos , Feminino , Neoplasias da Mama/etiologia , Neoplasias da Mama/genética , Disbiose , RNA Ribossômico 16S/genética , Lactobacillus/genética
3.
Development ; 150(3)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36620995

RESUMO

The transcription factor HAND2 plays essential roles during cardiogenesis. Hand2 endocardial deletion (H2CKO) results in tricuspid atresia or double inlet left ventricle with accompanying intraventricular septum defects, hypo-trabeculated ventricles and an increased density of coronary lumens. To understand the regulatory mechanisms of these phenotypes, single cell transcriptome analysis of mouse E11.5 H2CKO hearts was performed revealing a number of disrupted endocardial regulatory pathways. Using HAND2 DNA occupancy data, we identify several HAND2-dependent enhancers, including two endothelial enhancers for the shear-stress master regulator KLF2. A 1.8 kb enhancer located 50 kb upstream of the Klf2 TSS imparts specific endothelial/endocardial expression within the vasculature and endocardium. This enhancer is HAND2-dependent for ventricular endocardium expression but HAND2-independent for Klf2 vascular and valve expression. Deletion of this Klf2 enhancer results in reduced Klf2 expression within ventricular endocardium. These data reveal that HAND2 functions within endocardial gene regulatory networks including shear-stress response.


Assuntos
Endocárdio , Redes Reguladoras de Genes , Animais , Camundongos , Endocárdio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese/genética , Fatores de Transcrição/metabolismo
4.
G3 (Bethesda) ; 13(3)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36534986

RESUMO

Pseudouridine (Psi) is one of the most frequent post-transcriptional modification of RNA. Enzymatic Psi modification occurs on rRNA, snRNA, snoRNA, tRNA, and non-coding RNA and has recently been discovered on mRNA. Transcriptome-wide detection of Psi (Psi-seq) has yet to be performed for the widely studied model organism Drosophila melanogaster. Here, we optimized Psi-seq analysis for this species and have identified thousands of Psi modifications throughout the female fly head transcriptome. We find that Psi is widespread on both cellular and mitochondrial rRNAs. In addition, more than a thousand Psi sites were found on mRNAs. When pseudouridylated, mRNAs frequently had many Psi sites. Many mRNA Psi sites are present in genes encoding for ribosomal proteins, and many are found in mitochondrial encoded RNAs, further implicating the importance of pseudouridylation for ribosome and mitochondrial function. The 7SLRNA of the signal recognition particle is the non-coding RNA most enriched for Psi. The 3 mRNAs most enriched for Psi encode highly expressed yolk proteins (Yp1, Yp2, and Yp3). By comparing the pseudouridine profiles in the RluA-2 mutant and the w1118 control genotype, we identified Psi sites that were missing in the mutant RNA as potential RluA-2 targets. Finally, differential gene expression analysis of the mutant transcriptome indicates a major impact of loss of RluA-2 on the ribosome and translational machinery.


Assuntos
Drosophila melanogaster , Transcriptoma , Feminino , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Pseudouridina/genética , Pseudouridina/análise , Pseudouridina/metabolismo , Perfilação da Expressão Gênica , RNA Ribossômico/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Nucleolar Pequeno , Processamento Pós-Transcricional do RNA
5.
Cancers (Basel) ; 14(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35884498

RESUMO

Ovarian cancer is a deadly disease attributed to late-stage detection as well as recurrence and the development of chemoresistance. Ovarian cancer stem cells (OCSCs) are hypothesized to be largely responsible for the emergence of chemoresistant tumors. Although chemotherapy may initially succeed at decreasing the size and number of tumors, it leaves behind residual malignant OCSCs. In this study, we demonstrate that aldehyde dehydrogenase 1A1 (ALDH1A1) is essential for the survival of OCSCs. We identified a first-in-class ALDH1A1 inhibitor, compound 974, and used 974 as a tool to decipher the mechanism of stemness regulation by ALDH1A1. The treatment of OCSCs with 974 significantly inhibited ALDH activity, the expression of stemness genes, and spheroid and colony formation. An in vivo limiting dilution assay demonstrated that 974 significantly inhibited CSC frequency. A transcriptomic sequencing of cells treated with 974 revealed a significant downregulation of genes related to stemness and chemoresistance as well as senescence and the senescence-associated secretory phenotype (SASP). We confirmed that 974 inhibited the senescence and stemness induced by platinum-based chemotherapy in functional assays. Overall, these data establish that ALDH1A1 is essential for OCSC survival and that ALDH1A1 inhibition suppresses chemotherapy-induced senescence and stemness. Targeting ALDH1A1 using small-molecule inhibitors in combination with chemotherapy therefore presents a promising strategy to prevent ovarian cancer recurrence and has the potential for clinical translation.

6.
mSystems ; 7(3): e0148921, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35642922

RESUMO

Microbiota studies have reported changes in the microbial composition of the breast upon cancer development. However, results are inconsistent and limited to the later phases of cancer development (after diagnosis). We analyzed and compared the resident bacterial taxa of histologically normal breast tissue (healthy, H, n = 49) with those of tissues donated prior to (prediagnostic, PD, n = 15) and after (adjacent normal, AN, n = 49, and tumor, T, n = 46) breast cancer diagnosis (n total = 159). DNA was isolated from tissue samples and submitted for Illumina MiSeq paired-end sequencing of the V3-V4 region of the 16S gene. To infer bacterial function in breast cancer, we predicted the functional bacteriome from the 16S sequencing data using PICRUSt2. Bacterial compositional analysis revealed an intermediary taxonomic signature in the PD tissue relative to that of the H tissue, represented by shifts in Bacillaceae, Burkholderiaceae, Corynebacteriaceae, Streptococcaceae, and Staphylococcaceae. This compositional signature was enhanced in the AN and T tissues. We also identified significant metabolic reprogramming of the microbiota of the PD, AN, and T tissue compared with the H tissue. Further, preliminary correlation analysis between host transcriptome profiling and microbial taxa and genes in H and PD tissues identified altered associations between the human host and mammary microbiota in PD tissue compared with H tissue. These findings suggest that compositional shifts in bacterial abundance and metabolic reprogramming of the breast tissue microbiota are early events in breast cancer development that are potentially linked with cancer susceptibility. IMPORTANCE The goal of this study was to determine the role of resident breast tissue bacteria in breast cancer development. We analyzed breast tissue bacteria in healthy breast tissue and breast tissue donated prior to (precancerous) and after (postcancerous) breast cancer diagnosis. Compared to healthy tissue, the precancerous and postcancerous breast tissues demonstrated differences in the amounts of breast tissue bacteria. In addition, breast tissue bacteria exhibit different functions in pre-cancerous and post-cancerous breast tissues relative to healthy tissue. These differences in function are further emphasized by altered associations of the breast tissue bacteria with gene expression in the human host prior to cancer development. Collectively, these analyses identified shifts in bacterial abundance and metabolic function (dysbiosis) prior to breast tumor diagnosis. This dysbiosis may serve as a therapeutic target in breast cancer prevention.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Microbiota , Lesões Pré-Cancerosas , Animais , Humanos , Feminino , Disbiose/diagnóstico , Microbiota/genética , Mama , Bactérias/genética , Neoplasias da Mama/diagnóstico
7.
J Biol Chem ; 298(5): 101894, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378129

RESUMO

Extensive portions of the human genome have unknown function, including those derived from transposable elements. One such element, the DNA transposon Hsmar1, entered the primate lineage approximately 50 million years ago leaving behind terminal inverted repeat (TIR) sequences and a single intact copy of the Hsmar1 transposase, which retains its ancestral TIR-DNA-binding activity, and is fused with a lysine methyltransferase SET domain to constitute the chimeric SETMAR gene. Here, we provide a structural basis for recognition of TIRs by SETMAR and investigate the function of SETMAR through genome-wide approaches. As elucidated in our 2.37 Å crystal structure, SETMAR forms a dimeric complex with each DNA-binding domain bound specifically to TIR-DNA through the formation of 32 hydrogen bonds. We found that SETMAR recognizes primarily TIR sequences (∼5000 sites) within the human genome as assessed by chromatin immunoprecipitation sequencing analysis. In two SETMAR KO cell lines, we identified 163 shared differentially expressed genes and 233 shared alternative splicing events. Among these genes are several pre-mRNA-splicing factors, transcription factors, and genes associated with neuronal function, and one alternatively spliced primate-specific gene, TMEM14B, which has been identified as a marker for neocortex expansion associated with brain evolution. Taken together, our results suggest a model in which SETMAR impacts differential expression and alternative splicing of genes associated with transcription and neuronal function, potentially through both its TIR-specific DNA-binding and lysine methyltransferase activities, consistent with a role for SETMAR in simian primate development.


Assuntos
Genoma Humano , Histona-Lisina N-Metiltransferase/genética , Primatas/genética , Animais , Evolução Biológica , Encéfalo/metabolismo , Elementos de DNA Transponíveis/genética , Estudo de Associação Genômica Ampla , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Sequências Repetidas Invertidas , Lisina/genética , Primatas/metabolismo , Transposases/química
8.
Clin Epigenetics ; 14(1): 21, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35139887

RESUMO

BACKGROUND: Genome-wide association studies have identified several breast cancer susceptibility loci. However, biomarkers for risk assessment are still missing. Here, we investigated cancer-related molecular changes detected in tissues from women at high risk for breast cancer prior to disease manifestation. Disease-free breast tissue cores donated by healthy women (N = 146, median age = 39 years) were processed for both methylome (MethylCap) and transcriptome (Illumina's HiSeq4000) sequencing. Analysis of tissue microarray and primary breast epithelial cells was used to confirm gene expression dysregulation. RESULTS: Transcriptomic analysis identified 69 differentially expressed genes between women at high and those at average risk of breast cancer (Tyrer-Cuzick model) at FDR < 0.05 and fold change ≥ 2. Majority of the identified genes were involved in DNA damage checkpoint, cell cycle, and cell adhesion. Two genes, FAM83A and NEK2, were overexpressed in tissue sections (FDR < 0.01) and primary epithelial cells (p < 0.05) from high-risk breasts. Moreover, 1698 DNA methylation changes were identified in high-risk breast tissues (FDR < 0.05), partially overlapped with cancer-related signatures, and correlated with transcriptional changes (p < 0.05, r ≤ 0.5). Finally, among the participants, 35 women donated breast biopsies at two time points, and age-related molecular alterations enhanced in high-risk subjects were identified. CONCLUSIONS: Normal breast tissue from women at high risk of breast cancer bears molecular aberrations that may contribute to breast cancer susceptibility. This study is the first molecular characterization of the true normal breast tissues, and provides an opportunity to investigate molecular markers of breast cancer risk, which may lead to new preventive approaches.


Assuntos
Neoplasias da Mama/diagnóstico , Epigênese Genética/genética , Medição de Risco/métodos , Ativação Transcricional/genética , Adulto , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/fisiopatologia , Estudos de Coortes , Metilação de DNA/genética , Metilação de DNA/fisiologia , Feminino , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Humanos , Pessoa de Meia-Idade , Medição de Risco/estatística & dados numéricos , Ativação Transcricional/fisiologia
9.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35135874

RESUMO

Bacteria use surface appendages called type IV pili to perform diverse activities including DNA uptake, twitching motility, and attachment to surfaces. The dynamic extension and retraction of pili are often required for these activities, but the stimuli that regulate these dynamics remain poorly characterized. To address this question, we study the bacterial pathogen Vibrio cholerae, which uses mannose-sensitive hemagglutinin (MSHA) pili to attach to surfaces in aquatic environments as the first step in biofilm formation. Here, we use a combination of genetic and cell biological approaches to describe a regulatory pathway that allows V. cholerae to rapidly abort biofilm formation. Specifically, we show that V. cholerae cells retract MSHA pili and detach from a surface in a diffusion-limited, enclosed environment. This response is dependent on the phosphodiesterase CdpA, which decreases intracellular levels of cyclic-di-GMP to induce MSHA pilus retraction. CdpA contains a putative nitric oxide (NO)-sensing NosP domain, and we demonstrate that NO is necessary and sufficient to stimulate CdpA-dependent detachment. Thus, we hypothesize that the endogenous production of NO (or an NO-like molecule) in V. cholerae stimulates the retraction of MSHA pili. These results extend our understanding of how environmental cues can be integrated into the complex regulatory pathways that control pilus dynamic activity and attachment in bacterial species.


Assuntos
Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/fisiologia , Óxido Nítrico/farmacologia , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/metabolismo , Aderência Bacteriana/efeitos dos fármacos , Aderência Bacteriana/fisiologia , Proteínas de Fímbrias/genética , Regulação Bacteriana da Expressão Gênica , Vibrio cholerae/genética
10.
Biomark Res ; 10(1): 8, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183258

RESUMO

BACKGROUND: Family with sequence similarity 83 member A (FAM83A) presents oncogenic properties in several cancers including breast cancer. Recently, we reported FAM83A overexpression in normal breast tissues from women at high risk of breast cancer. We now hypothesize that FAM83A is a key factor in breast cancer initiation. METHODS: Immunohistochemical staining was used to evaluate FAM83A protein levels in both a normal breast tissue microarray (TMA, N = 411) and a breast tumor TMA (N = 349). EGFR staining and its correlation with FAM83A expression were also assessed. Lentivirus-mediated manipulation of FAM83A expression in primary and hTERT-immortalized breast epithelial cells was employed. Biological and molecular alterations upon FAM83A overexpression/downregulation and FAM83A's interaction partners were investigated. RESULTS: TMA analysis revealed a 1.5-fold increase in FAM83A expression level in breast cancer cases as compared with normal breast tissues (p < 0.0001). FAM83A protein expression was directly correlated with EGFR level in both normal and breast cancer tissues. In in vitro assays, exogenous expression of FAM83A in either primary or immortalized breast epithelial cells promoted cell viability and proliferation. Additionally, Ingenuity Pathway Analysis (IPA) revealed that FAM83A overexpression in primary cells affected the expression of genes involved in cellular morphology and metabolism. Mass spectrometry analysis identified DDX3X and LAMB3 as potential FAM83A interaction partners in primary cells, while we detected FAM83A interaction with cytoskeleton reorganization factors, including LIMA1, MYH10, PLEC, MYL6 in the immortalized cells. CONCLUSIONS: This study shows that FAM83A promotes metabolic activation in primary breast epithelial cells and cell proliferation in both primary and immortalized cells. These findings support its role in early breast oncogenesis.

11.
Small Methods ; 5(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34541301

RESUMO

The blood brain barrier (BBB) protects the central nervous system from toxins and pathogens in the blood by regulating permeation of molecules through the barrier interface. In vitro BBB models described to date reproduce some aspects of BBB functionality, but also suffer from incomplete phenotypic expression of brain endothelial traits, difficulty in reproducibility and fabrication, or overall cost. To address these limitations, we describe a three-dimensional (3D) BBB model based on a hybrid paper/nanofiber scaffold. The cell culture platform utilizes lens paper as a framework to accommodate 3D culture of astrocytes. An electrospun nanofiber layer is coated onto one face of the paper to mimic the basement membrane and support growth of an organized two-dimensional layer of endothelial cells (ECs). Human induced pluripotent stem cell-derived ECs and astrocytes are co-cultured to develop a human BBB model. Morphological and spatial organization of model are validated with confocal microscopy. Measurements of transendothelial resistance and permeability demonstrate the BBB model develops a high-quality barrier and responds to hyperosmolar treatments. RNA-sequencing shows introduction of astrocytes both regulates EC tight junction proteins and improves endothelial phenotypes related to vasculogenesis. This model shows promise as a model platform for future in vitro studies of the BBB.

12.
J Bacteriol ; 203(20): e0027621, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34339299

RESUMO

Swimming motility is a critical virulence factor in pathogenesis for numerous Vibrio species. Vibrio campbellii DS40M4 is a wild-type isolate that has been recently established as a highly tractable model strain for bacterial genetics studies. We sought to exploit the tractability and relevance of this strain for characterization of flagellar gene regulation in V. campbellii. Using comparative genomics, we identified homologs of V. campbellii flagellar and chemotaxis genes conserved in other members of the Vibrionaceae and determined the transcriptional profile of these loci using differential RNA-seq. We systematically deleted all 63 predicted flagellar and chemotaxis genes in V. campbellii and examined their effects on motility and flagellum production. We specifically focused on the core regulators of the flagellar hierarchy established in other vibrios: RpoN (σ54), FlrA, FlrC, and FliA. Our results show that V. campbellii transcription of flagellar and chemotaxis genes is governed by a multitiered regulatory hierarchy similar to other motile Vibrio species. However, there are several critical differences in V. campbellii: (i) the σ54-dependent regulator FlrA is dispensable for motility; (ii) the flgA, fliEFGHIJ, flrA, and flrBC operons do not require σ54 for expression; and (iii) FlrA and FlrC coregulate class II genes. Our model proposes that the V. campbellii flagellar transcriptional hierarchy has three classes of genes, in contrast to the four-class hierarchy in Vibrio cholerae. Our genetic and phenotypic dissection of the V. campbellii flagellar regulatory network highlights the differences that have evolved in flagellar regulation across the Vibrionaceae. IMPORTANCE Vibrio campbellii is a Gram-negative bacterium that is free-living and ubiquitous in marine environments and is an important global pathogen of fish and shellfish. Disruption of the flagellar motor significantly decreases host mortality of V. campbellii, suggesting that motility is a key factor in pathogenesis. Using this model organism, we identified >60 genes that encode proteins with predicted structural, mechanical, or regulatory roles in function of the single polar flagellum in V. campbellii. We systematically tested strains containing single deletions of each gene to determine the impact on motility and flagellum production. Our studies have uncovered differences in the regulatory network and function of several genes in V. campbellii compared to established systems in Vibrio cholerae and Vibrio parahaemolyticus.


Assuntos
Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Transcrição Gênica/fisiologia , Vibrio/metabolismo , Sequência de Aminoácidos , Evolução Biológica , Quimiotaxia , Deleção de Genes , Modelos Biológicos , Movimento , Vibrio/genética
13.
Environ Microbiol ; 23(9): 5412-5432, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33998118

RESUMO

Vibrio campbellii BB120 (previously classified as Vibrio harveyi) is a fundamental model strain for studying quorum sensing in vibrios. A phylogenetic evaluation of sequenced Vibrio strains in Genbank revealed that BB120 is closely related to the environmental isolate V. campbellii DS40M4. We exploited DS40M4's competence for exogenous DNA uptake to rapidly generate greater than 30 isogenic strains with deletions of genes encoding BB120 quorum-sensing system homologues. Our results show that the quorum-sensing circuit of DS40M4 is distinct from BB120 in three ways: (i) DS40M4 does not produce an acyl homoserine lactone autoinducer but encodes an active orphan LuxN receptor, (ii) the quorum regulatory small RNAs (Qrrs) are not solely regulated by autoinducer signalling through the response regulator LuxO and (iii) the DS40M4 quorum-sensing regulon is much smaller than BB120 (~100 genes vs. ~400 genes, respectively). Using comparative genomics to expand our understanding of quorum-sensing circuit diversity, we observe that conservation of LuxM/LuxN proteins differs widely both between and within Vibrio species. These strains are also phenotypically distinct: DS40M4 exhibits stronger interbacterial cell killing, whereas BB120 forms more robust biofilms and is bioluminescent. These results underscore the need to examine wild isolates for a broader view of bacterial diversity in the marine ecosystem.


Assuntos
Percepção de Quorum , Vibrio , Proteínas de Bactérias/genética , Ecossistema , Filogenia , Percepção de Quorum/genética , Vibrio/genética
14.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753482

RESUMO

Periods of social instability can elicit adaptive phenotypic plasticity to promote success in future competition. However, the underlying molecular mechanisms have primarily been studied in captive and laboratory-reared animals, leaving uncertainty as to how natural competition among free-living animals affects gene activity. Here, we experimentally generated social competition among wild, cavity-nesting female birds (tree swallows, Tachycineta bicolor). After territorial settlement, we reduced the availability of key breeding resources (i.e., nest boxes), generating heightened competition; within 24 h we reversed the manipulation, causing aggressive interactions to subside. We sampled females during the peak of competition and 48 h after it ended, along with date-matched controls. We measured transcriptomic and epigenomic responses to competition in two socially relevant brain regions (hypothalamus and ventromedial telencephalon). Gene network analyses suggest that processes related to energy mobilization and aggression (e.g., dopamine synthesis) were up-regulated during competition, the latter of which persisted 2 d after competition had ended. Cellular maintenance processes were also down-regulated after competition. Competition additionally altered methylation patterns, particularly in pathways related to hormonal signaling, suggesting those genes were transcriptionally poised to respond to future competition. Thus, experimental competition among free-living animals shifts gene expression in ways that may facilitate the demands of competition at the expense of self-maintenance. Further, some of these effects persisted after competition ended, demonstrating the potential for epigenetic biological embedding of the social environment in ways that may prime individuals for success in future social instability.


Assuntos
Adaptação Biológica/genética , Encéfalo/metabolismo , Comportamento Competitivo , Epigênese Genética/fisiologia , Andorinhas/fisiologia , Agressão , Animais , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/fisiologia , Genoma , Hormônios/metabolismo , Comportamento de Nidação , Neurotransmissores/metabolismo , Territorialidade , Regulação para Cima
15.
Mol Cancer Res ; 19(7): 1168-1181, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33753553

RESUMO

High-grade serous ovarian cancer (HGSOC) is characterized by chromosomal instability, DNA damage, oxidative stress, and high metabolic demand that exacerbate misfolded, unfolded, and damaged protein burden resulting in increased proteotoxicity. However, the underlying mechanisms that maintain protein homeostasis to promote HGSOC growth remain poorly understood. This study reports that the neuronal deubiquitinating enzyme, ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), is overexpressed in HGSOC and maintains protein homeostasis. UCHL1 expression was markedly increased in HGSOC patient tumors and serous tubal intraepithelial carcinoma (HGSOC precursor lesions). High UCHL1 levels correlated with higher tumor grade and poor patient survival. UCHL1 inhibition reduced HGSOC cell proliferation and invasion, as well as significantly decreased the in vivo metastatic growth of ovarian cancer xenografts. Transcriptional profiling of UCHL1-silenced HGSOC cells revealed downregulation of genes implicated with proteasome activity along with upregulation of endoplasmic reticulum stress-induced genes. Reduced expression of proteasome subunit alpha 7 (PSMA7) and acylaminoacyl peptide hydrolase (APEH), upon silencing of UCHL1, resulted in a significant decrease in proteasome activity, impaired protein degradation, and abrogated HGSOC growth. Furthermore, the accumulation of polyubiquitinated proteins in the UCHL1-silenced cells led to attenuation of mTORC1 activity and protein synthesis, and induction of terminal unfolded protein response. Collectively, these results indicate that UCHL1 promotes HGSOC growth by mediating protein homeostasis through the PSMA7-APEH-proteasome axis. IMPLICATIONS: This study identifies the novel links in the proteostasis network to target protein homeostasis in HGSOC and recognizes the potential of inhibiting UCHL1 and APEH to sensitize cancer cells to proteotoxic stress in solid tumors.


Assuntos
Cistadenocarcinoma Seroso/genética , Neoplasias Ovarianas/genética , Peptídeo Hidrolases/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteostase/genética , Ubiquitina Tiolesterase/genética , Animais , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Indóis/farmacologia , Estimativa de Kaplan-Meier , Camundongos Nus , Gradação de Tumores , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Oximas/farmacologia , Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
mBio ; 12(2)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727356

RESUMO

Sequence-specific DNA-binding domains (DBDs) are conserved in all domains of life. These proteins carry out a variety of cellular functions, and there are a number of distinct structural domains already described that allow for sequence-specific DNA binding, including the ubiquitous helix-turn-helix (HTH) domain. In the facultative pathogen Vibrio cholerae, the chitin sensor ChiS is a transcriptional regulator that is critical for the survival of this organism in its marine reservoir. We recently showed that ChiS contains a cryptic DBD in its C terminus. This domain is not homologous to any known DBD, but it is a conserved domain present in other bacterial proteins. Here, we present the crystal structure of the ChiS DBD at a resolution of 1.28 Å. We find that the ChiS DBD contains an HTH domain that is structurally similar to those found in other DNA-binding proteins, like the LacI repressor. However, one striking difference observed in the ChiS DBD is that the canonical tight turn of the HTH is replaced with an insertion containing a ß-sheet, a variant which we term the helix-sheet-helix. Through systematic mutagenesis of all positively charged residues within the ChiS DBD, we show that residues within and proximal to the ChiS helix-sheet-helix are critical for DNA binding. Finally, through phylogenetic analyses we show that the ChiS DBD is found in diverse proteobacterial proteins that exhibit distinct domain architectures. Together, these results suggest that the structure described here represents the prototypical member of the ChiS-family of DBDs.IMPORTANCE Regulating gene expression is essential in all domains of life. This process is commonly facilitated by the activity of DNA-binding transcription factors. There are diverse structural domains that allow proteins to bind to specific DNA sequences. The structural basis underlying how some proteins bind to DNA, however, remains unclear. Previously, we showed that in the major human pathogen Vibrio cholerae, the transcription factor ChiS directly regulates gene expression through a cryptic DNA-binding domain. This domain lacked homology to any known DNA-binding protein. In the current study, we determined the structure of the ChiS DNA-binding domain (DBD) and found that the ChiS-family DBD is a cryptic variant of the ubiquitous helix-turn-helix (HTH) domain. We further demonstrate that this domain is conserved in diverse proteins that may represent a novel group of transcriptional regulators.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Sequências Hélice-Volta-Hélice/genética , Domínios Proteicos , Vibrio cholerae/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Ligação a DNA/química , Mutagênese , Ligação Proteica , Vibrio cholerae/metabolismo
17.
Cancer Discov ; 11(7): 1792-1807, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33632774

RESUMO

Colorectal cancer is multifaceted, with subtypes defined by genetic, histologic, and immunologic features that are potentially influenced by inflammation, mutagens, and/or microbiota. Colorectal cancers with activating mutations in BRAF are associated with distinct clinical characteristics, although the pathogenesis is not well understood. The Wnt-driven multiple intestinal neoplasia (MinApcΔ716/+) enterotoxigenic Bacteroides fragilis (ETBF) murine model is characterized by IL17-dependent, distal colon adenomas. Herein, we report that the addition of the BRAF V600E mutation to this model results in the emergence of a distinct locus of midcolon tumors. In ETBF-colonized BRAF V600E Lgr5 CreMin (BLM) mice, tumors have similarities to human BRAF V600E tumors, including histology, CpG island DNA hypermethylation, and immune signatures. In comparison to Min ETBF tumors, BLM ETBF tumors are infiltrated by CD8+ T cells, express IFNγ signatures, and are sensitive to anti-PD-L1 treatment. These results provide direct evidence for critical roles of host genetic and microbiota interactions in colorectal cancer pathogenesis and sensitivity to immunotherapy. SIGNIFICANCE: Colorectal cancers with BRAF mutations have distinct characteristics. We present evidence of specific colorectal cancer gene-microbial interactions in which colonization with toxigenic bacteria drives tumorigenesis in BRAF V600E Lgr5 CreMin mice, wherein tumors phenocopy aspects of human BRAF-mutated tumors and have a distinct IFNγ-dominant immune microenvironment uniquely responsive to immune checkpoint blockade.This article is highlighted in the In This Issue feature, p. 1601.


Assuntos
Bacteroides fragilis/fisiologia , Neoplasias Colorretais/microbiologia , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Carcinogênese , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/terapia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Mutação
18.
mBio ; 10(6)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848285

RESUMO

In Vibrio species, chitin-induced natural transformation enables bacteria to take up DNA from the external environment and integrate it into their genome. Expression of the master competence regulator TfoX bypasses the need for chitin induction and drives expression of the genes required for competence in several Vibrio species. Here, we show that TfoX expression in Vibrio campbellii strains DS40M4 and NBRC 15631 enables high natural transformation frequencies. Conversely, transformation was not achieved in the model quorum-sensing strain V. campbellii BB120 (previously classified as Vibrio harveyi). Surprisingly, we find that quorum sensing is not required for transformation in V. campbellii DS40M4 or Vibrio parahaemolyticus in contrast to the established regulatory pathway in Vibrio cholerae in which quorum sensing is required to activate the competence regulator QstR. Similar to V. cholerae, expression of both QstR and TfoX is necessary for transformation in DS40M4. There is a wide disparity in transformation frequencies among even closely related Vibrio strains, with V. vulnificus having the lowest functional transformation frequency. Ectopic expression of both TfoX and QstR is sufficient to produce a significant increase in transformation frequency in Vibrio vulnificus To explore differences in competence regulation, we used previously studied V. cholerae competence genes to inform a comparative genomics analysis coupled with transcriptomics. We find that transformation capability cannot necessarily be predicted by the level of gene conservation but rather correlates with competence gene expression following TfoX induction. Thus, we have uncovered notable species- and strain-level variations in the competence gene regulation pathway across the Vibrio genus.IMPORTANCE Naturally transformable, or competent, bacteria are able to take up DNA from their environment, a key method of horizontal gene transfer for acquisition of new DNA sequences. Our research shows that Vibrio species that inhabit marine environments exhibit a wide diversity in natural transformation capability ranging from nontransformability to high transformation rates in which 10% of cells measurably incorporate new DNA. We show that the role of regulatory systems controlling the expression of competence genes (e.g., quorum sensing) differs throughout both the species and strain levels. We explore natural transformation capabilities of Vibrio campbellii species which have been thus far uncharacterized and find novel regulation of competence. Expression of two key transcription factors, TfoX and QstR, is necessary to stimulate high levels of transformation in Vibrio campbellii and recover low rates of transformation in Vibrio vulnificus.


Assuntos
Regulação Bacteriana da Expressão Gênica , Transformação Bacteriana , Vibrio/fisiologia , Proteínas de Bactérias/genética , Competência de Transformação por DNA/genética , DNA Bacteriano , Expressão Gênica , Humanos , Modelos Biológicos , Fenótipo , Filogenia , Percepção de Quorum , Transativadores/genética , Vibrio/classificação
19.
Cancers (Basel) ; 11(10)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600962

RESUMO

BACKGROUND: Ovarian cancer is the most lethal gynecologic malignancy. There is a lack of comprehensive investigation of disease initiation and progression, including gene expression changes during early metastatic colonization. METHODS: RNA-sequencing (RNA-seq) was done with matched primary tumors and fallopian tubes (n = 8 pairs) as well as matched metastatic and primary tumors (n = 11 pairs) from ovarian cancer patients. Since these are end point analyses, it was combined with RNA-seq using high-grade serous ovarian cancer cells seeded on an organotypic three-dimensional (3D) culture model of the omentum, mimicking early metastasis. This comprehensive approach revealed key changes in gene expression occurring in ovarian cancer initiation and metastasis, including early metastatic colonization. RESULTS: 2987 genes were significantly deregulated in primary tumors compared to fallopian tubes, 845 genes were differentially expressed in metastasis compared to primary tumors and 304 genes were common to both. An assessment of patient metastasis and 3D omental culture model of early metastatic colonization revealed 144 common genes that were altered during early colonization and remain deregulated even in the fully developed metastasis. Deregulation of the matrisome was a key process in early and late metastasis. CONCLUSION: These findings will help in understanding the key pathways involved in ovarian cancer progression and eventually targeting those pathways for therapeutic interventions.

20.
Epigenetics ; 14(12): 1209-1223, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31240997

RESUMO

Chronic inflammation is strongly associated with an increased risk of developing colorectal cancer. DNA hypermethylation of CpG islands alters the expression of genes in cancer cells and plays an important role in carcinogenesis. Chronic inflammation is also associated with DNA methylation alterations and in a mouse model of inflammation-induced colon tumorigenesis, we previously demonstrated that inflammation-induced tumours have 203 unique regions with DNA hypermethylation compared to uninflamed epithelium. To determine if altering inflammation-induced DNA hypermethylation reduces tumorigenesis, we used the same mouse model and treated mice with the DNA methyltransferase (DNMT) inhibitor decitabine (DAC) throughout the tumorigenesis time frame. DAC treatment caused a significant reduction in colon tumorigenesis. The tumours that did form after DAC treatment had reduced inflammation-specific DNA hypermethylation and alteration of expression of associated candidate genes. When compared, inflammation-induced tumours from control (PBS-treated) mice were enriched for cell proliferation associated gene expression pathways whereas inflammation-induced tumours from DAC-treated mice were enriched for interferon gene signatures. To further understand the altered tumorigenesis, we derived tumoroids from the different tumour types. Interestingly, tumoroids derived from inflammation-induced tumours from control mice maintained many of the inflammation-induced DNA hypermethylation alterations and had higher levels of DNA hypermethylation at these regions than tumoroids from DAC-treated mice. Importantly, tumoroids derived from inflammation-induced tumours from the DAC-treated mice proliferated more slowly than those derived from the inflammation-induced tumours from control mice. These studies suggest that inhibition of inflammation-induced DNA hypermethylation may be an effective strategy to reduce inflammation-induced tumorigenesis.


Assuntos
Carcinogênese/genética , Neoplasias do Colo/tratamento farmacológico , Metilação de DNA , DNA-Citosina Metilases/antagonistas & inibidores , Animais , Carcinogênese/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Decitabina/farmacologia , Decitabina/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Interferons/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...